Circular Bioeconomy Systems for
Concurrently Delivering Solutions to Climate Change, Biodiversity Loss and Food Security

United Nations Environment Program
UNEA-6
February 28, 2024
15:30 –17:00 EAT
Program in brief:

- Moderator – A.G. Kawamura, farmer: Co-Chair Solutions from the Land (SfL)
- Dr. John Reid- Professor, University of IL, Chair ASABE CBS Institute
- Margaret Munene- Palmhouse Dairies, Kenya
- Ana Carolina Zimmermann- farmer/rancher, Brazil
- Lois Wright Morton- farmer, Outwash Terrace Farm, USA
- Isabel Albinelli- FAO, Rome
- Ernie Shea- President, SfL
Circular Bioeconomy Systems for Concurrently Delivering Agroecosystems Services and Food & Nutrition Security

Dr. John F. Reid
Research Professor in Computer Science, Ag and Bio Engineering, Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Heartland Bioeconomy

- Highly productive linear bioeconomy
- 80% farmland, with 355,000 farms covering 175.6 million acres
- In 2021, produced 53% of corn receipts ($37.7 billion), 45.6% of soybean receipts ($22.4 billion), and 24.5% of wheat receipts ($2.9 billion) in the United States
- Agriculture in the region accounts for an average of 6.6% of the GDP and approximately 2.2M jobs (in Food and Agriculture).
- Significant ag-related industry located in the region

Similar opportunities for creating impact exists across other viable CBE systems
Agricultural Circular Bioeconomy

- The CBE is a complex system of systems
- Sustainable Precision Ag is a critical first step
- Regenerative Ag opportunities need to evolve
- The role of Digital Technologies is pivotal
Vision

A thriving circular bioeconomy requires:

- *Reducing, recycling, and reusing* waste productively
- *Optimizing* production systems
- *Displacing fossil fuels* with renewables
Areas of Critical Investment

Enabling Investments in…

- Use-Inspired Research
- Translation of Research into Practice
- Workforce Development

Across major dimensions of impact

- Precision farming and regenerative agriculture
- Biomanufacturing and bio-derived material production
- Resource recovery and reuse
- Farm to market sensing, tracking, and supply-chain optimization
Innovation is required across the ecosystem

Use data to drive outcomes:
- Sustainable precision ag through machine system optimization and power management
- Digital ag to enable traceability from farm-to-fork

Innovative Resource Recovery (RR):
- Understand the RR opportunity space (biorefineries, food production systems)
- Accelerated learning on viable recovery

Creating value-added products for bioresources:
- Aggregation of waste streams
- Novel approaches to convert waste to value-added products

Building a circularity mindset:
- Consumer education
- Quantification of the challenges/benefits
- Prepare for CBE
Margaret Munene, MBS

CEO

Palmhouse Dairies Ltd.

Service to Humanity is Service to God
FARMERS TRAINING:

- Farmers are trained periodically on best animal breed selection.
- Good animal care and husbandry.
- Increased milk production and reduction on the number of cows on the farm.
GREEN ENERGY:

- Biogas production for cooking.
- Cheap and safe energy that protects the environment.
- Organic manure for the farm.
AGRICULTURAL CIRCULAR BIOECONOMY SYSTEMS; DAIRY SECTOR.

SOIL TESTING:

- Increased food sustainability on the farm.
- Increased animal fodder production.
- Improved soil conservation on the farm.
- Better soil management on the farm.
AGRICULTURAL CIRCULAR BIOECONOMY SYSTEMS; DAIRY SECTOR.

SOIL TESTING:

- Increased food sustainability on the farm.
- Increased animal fodder production.
- Improved soil conservation on the farm.
- Better soil management on the farm.
QUESTION SESSION?

THANK YOU!
SCALING CIRCULAR SYSTEMS TO
A DIVERSIFIED SMALL-HOLDER FARM

Lois Wright Morton, PhD., Specialty crop grower NE Ohio, USA
Professor Rural Sociology Iowa State University; SfL Board of Directors
Ashtabula County Scenic Rivers Council-ODNR

United Nations Environmental Program; 6th Assembly UNEA-6
SfL UNEA-6 Side Event Green Room Nairobi, Kenya 2024 February 28
Agricultural Circular Bioeconomy Systems for Concurrently Delivering Solutions
to Climate Change, Biodiversity Loss and Pollution and Food Security
DIVERSIFIED SMALL-HOLDER FARM

East Branch the Ashtabula River, flows N to Lake Erie

20 ac (8 ha) corn-soy; 3 ac (1.2 ha) hay;
3 ac (1.2 ha) specialty crops (blueberries, raspberries, vegetables, cut flowers); 4 ac (1.6 ha) wetland, river & bottom lands; 21 ac (5.5 ha) woodland

Total 51 ac (20.6 ha)
What does a small-holder farm look like when it uses productive, efficient, nature positive farm level circular systems?*

*SFL model of Smart Agriculture circular systems (2022)
What is the value of circular systems to farmers?

Retained value ...

Farm products are re-circulated through farm and ecological systems and offer retained value (e.g. manure, straw, cover crops, recycled water, biogas, seed production, etc) as co-products that can substitute for production inputs and be marketed off-farm as outputs.

[UN Environment Program draft Global Strategy for Sustainable Consumption and Production (2023-2030)]

What does “retained value” look like? $$$$$

Co-products that have intentional, planned structures and processes around them (whereas by-products are not intentional)
Retained Value

Rain barrels recycle water

Augmentation box draws parasitic wasps to discarded fruit & SWD larvae

Co-product fresh berries: jams and jellies

Hummingbirds eat pest insect larvae

Bees & butterflies pollinate berries

Co-product of pollination: honey

On-farm market stand reduces labor costs
One farm’s output is another farm’s input

Community Circularity

...and Regional Circularity
Wholesale 2 local grocery stores; retail 2 farmer markets; and farm stand

direct & indirect effects on rural economic and social well being

Off-farm outputs and farm outcomes

.. impact local economies and labor market

.. stimulates sense of community
Small-holder farmers are part of the solution: protect & enhance biodiversity, food & nutrition security, changing climate
The global population suffers from some form of malnutrition in 2020 (SOFI, 2022). 30% of the world’s agricultural production is lost (FAO & UNEP, 2022). 13.2% of available food is wasted (FAO & UNEP, 2022). 17% of global food demand is projected to surge by 60% by 2050, necessitating sustainable approaches to preserve natural resources and ecosystems.

FAO Programme Priority Area “Sustainable Bioeconomy for Food and Agriculture”

- Using existing biological resources more efficiently and wasting less
- Producing and consuming in a more environmentally friendly and healthy way
- Creating circular and inclusive value chains and local economic opportunities that leave no one behind
Country support – The enabling environment

Country support – Tools for mainstreaming sustainability and circularity

- **21 countries and 3 regions** with a bioeconomy dedicated strategy, **17** under development
- Almost all strategies contain actions related to **circularity**
- Austria, Estonia, Ireland, Portugal and East African regional bioeconomy strategy – around **30% of the actions are related to circularity**
- The circular aspect of the bioeconomy is highly present in several **national food, climate, biodiversity policies and report** (NDCs, NAPs, LT-LEDS, NBSAPs..)
FAO’S WORK – BIOINNOVATIONS LEVEL

150 bioeconomy-related projects worth almost USD 330 million in the past biennium (2022-2023).

BIOFIBRE FOR CLOTHING (PAKISTAN)

Turning non-edible waste from the banana value chain into sustainably produced fabrics to reduce waste from banana production, estimated at two-thirds of the overall biomass, while reducing chemicals requirements in the manufacturing.

UPCOMING GLOBAL BIOECONOMY PROJECT “ScaleUpBio”

Barbados, Bolivia, Côte d’Ivoire, Viet Nam

Test four bioinnovations in selected value chains that are able to concurrently deliver environmental, social and economic benefits.
BIODAF – CIRCULAR BIOECONOMY IN ABIDJAN

THE ISSUES

Waste
- The district produces 4,000 t of food waste per day
 - No efficient collection and valorisation

Agricultural inputs
- Imported
- Costly
- Unsustainable

Job creation
- 6 million inhabitants
- +187,000 inhabitants/year

THE CIRCULAR BIOINNOVATION

- Feed for poultry and aquaculture
- Organic fertilizer
- Urban and peri-urban agriculture
- Business opportunities for women and vulnerable people
- Collection of food waste at urban markets
- Food distribution
- Food security
- Biodegradation using black soldier fly larvae
- Larvae
- Frass
BIODAF CIRCULAR MODEL – THE IMPACTS

BioDAF Farm at 50% capacity

- Quantity of waste reduced per day: ~960 KG
- Quantity of larvae produced per day: ~120 KG
- Quantity of organic fertilizer produced per day: ~200 KG

People – Job creation

- People currently employed on the farm: 8
- People trained on the farm: 10

Scalability

- Cost-effective
- Low initial capital
- Low know-how
- Easy to replicate in several contexts
THANK YOU!

ISABEL.ALBINELLI@FAO.ORG

FAO BIOECONOMY WEBSITE
Farmers Sharing their CBE Experiences:

- SfL white paper featuring farmers experimenting with CBS across the globe
- Produced in partnership with FAO, GACSA, ASABE and other partners
- Will focus on:
 - local and global climate and market conditions
 - climate smart management strategies
 - farmers experiences with CBS producing multiple benefits
To Apply:

- Send your name, geographic location, and a brief summary of your farm operation and willingness to participate to:

 Ernie Shea, Solutions from the Land
 eshea@solutionsfromtheland.org
Join us in advancing our vision!

solutionsfromtheland.org